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INTRODUCTION

Observations suggest that large scale instabilities in the solar corona, such as

solar flares, act to release energy contained in complex magnetic structures,

relaxing the fields to a simpler topology. This is possible only if resistive

effects play an important role during the flaring process. When considering

perturbations of a static equilibrium in a highly conducting magnetized plasma

resistivity is usually negligible, as can be seen by examining the linearized

induction equation

(i)

unless perturbations are constant along a field line (V x (y_ x Bo ) = O) or the

length scale for diffusion becomes small. The pr(_nence oF the sun's extremely

dense photosphere, which anchors magnetic footpoints so that coronal disturbances

must vanish there, would seem to exclude the first possibility (Hood 1984) except

for very special equilibria (Mok and Van Hoven 1982). On the other hand modes

which have a short wavelength perpendicular to the magnetic field and for which

the second case occurs, called resistive ballooning modes, are known to be

unstable in a wide range of conditions relevant to fusion plasmas (see, e.g. Drake

and Antonsen 1985). We find that the same is true for arcades in the solar

corona.

MODE EQUATIONS

The equations describing the linear evolution of resistive ballooning modes are

obtained by using a modified WKB expansion in the short perpendicular wavelength

e, while variations of the perturbations along the field are described by a

slowly varying amplitude, on which the line tying boundary conditions are

imposed. In this way the resistive MHD equations are reduced (to lowest order in

_), to a fourth order system of ordinary differential equations for the

amplitudes along the field lines:
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The arcade is symmetric'around 0 = 0 and extends infinitely in the z-direction.

The photosphere is located at 0 = -,/2 and 0 = _/2, where the line tying

conditions are _ = 0, _ = 0. _, _, K, _ are the perturbed scalar potential,

pressure, parallel vector potential and flow velocity respectively. K z is the

squared norm or the perpendicular wave number, and is a quadratic function of O.

R m is the magnetic Reynolds number for the length scale _. Equations (2)-(5)

depend parametrically on r, and the resulting growth rate y also is a function y

= y(r). The radial structure of the mode is therefore not established to lowest

order. Details of this problem maybe found in Hood, 1986. However, the maximum

of the function y(r), when it is positive, is the actual physical growth rate of

the mode (Connor, Hastie and Taylor 1978). The driving term for the instability

is the radial pressure gradient, when it is negative, while magnetic shear and

compressibility tend to have a stabilising effect. Our results will be

illustrated for the equilibrium

B 0 = Bore-r/z

B z = kBo(_ + (2 + 2r - rz)e-r) % (6)

_p = (i - AZ)BZo/2 (o + (2 + 2r - rZ)e -r)

which depends on the parameters h, a. The same results hold in general because

the local analysis depends on the values of fields and pressure on each surface

independently.

RESULTS

In general, given an equilibrium, there are certain ranges of magnetic surfaces

for which the system (2)-(15) predicts instability even without dissipation (Hood

1986 ). As expected we find that in this case resistivity has little influence on

the growth rates that are found. On the other hand, in regions where the

equilibrium is stable to ideal modes, we find that resistivity introduces a

purely growing mode with eigenvalue y depending linearly on the inverse magnetic

Reynolds number _z. As ideal marginal stability is approached, or alternatively

if the perpendicular wavelength is decreased, one finds that the power dependence

decreases gradually to y x _/3, as shown in Fig. l, where curves for different

values of the equilibrium parameters are shown. The main conclusion is that

within the resistive MHD approximation cylindrically synanetric arcades with

pressure falling with radius are unstable to resistive localised modes; the

growth rates, close to ideal marginal stability, are large, typically in the

range 10-Z_A • 7 • 10-Z_A so that it would appear that energy could be released

during i0-i00 Alfven times. The wavelength of the modes is expected to be

limited by the ion gyroradius, when stabilising drift effects must be taken into

account. On the other hand the suggestion has been made (Weiland and Mondt 1985)

that the nonlinear development of these localised modes could lead to an

explosive instability. In any case the nonlinear evolution of resistive

ballooning modes should be studied to assess their overall relevance to the

violent and rapidly evolving phenomena observed on the sun.
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Fig. I. Growth rate y (normalised to the Alfven £requency) as a function

o_ _x for different values o_ equilibzium parameters: a-A = 0.14, a = 0.25,

r = 1.5, b-A = 0.2, a = 0.15, r = 1.76, c-A = 0.21, _ = 0.20, r = 1.65. In

all cases, the equilibrium is ideally stable at every radius.
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